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DeepAVO: Efficient Pose Refining with Feature
Distilling for Deep Visual Odometry

Ran Zhu, Mingkun Yang, Wang Liu, Rujun Song, Zhuoling Xiao, Bo Yan

Abstract—The technology for Visual Odometry (VO) that esti-
mates the position and orientation of the moving object through
analyzing the image sequences captured by on-board cameras,
has been well investigated with the rising interest in autonomous
driving. This paper studies monocular VO from the perspective
of Deep Learning (DL). Different from most current learning-
based methods, our approach, called DeepAVO, is established on
the intuition that features contribute discriminately to different
motion patterns. Specifically, we present a novel four-branch
network to learn the rotation and translation by leveraging
Convolutional Neural Networks (CNNs) to focus on different
quadrants of optical flow input. To enhance the ability of feature
selection, we further introduce an effective channel-spatial atten-
tion mechanism to force each branch to explicitly distill related
information for specific Frame to Frame (F2F) motion estimation.
Experiments on the KITTI and Malaga benchmark datasets
demonstrate that the proposed DeepAVO outperforms state-of-
the-art monocular methods by a large margin and produces
competitive results against the classic stereo VO algorithm, which
also highlights its promising generalization ability.

Index Terms—Visual odometry, Convolutional neural network,
Attention mechanism

I. INTRODUCTION

FROM Unmanned Ground Vehicles (UGVs) to Micro
Aerial Vehicles (MAVs), it is essential to know where

autonomous robots are and to perceive the surrounding area.
Global Positioning System (GPS) provides information about
the position of the sensor in the world coordinate. However,
a precise self-localization purely relying on the GPS is not
sufficient for challenging environments like indoor scenarios
and urban canyons. In this situation, a more precise measure
or an alternative localization system is required in the real
application for autonomous driving.

The camera is a small, light-weighted sensor that provides
rich information about the environment around the sensing
platform. It can recover the ego-motion from image sequences
by exploiting the consistency between consecutive frames [1].
Therefore, The concept of Visual Simultaneous Localization
And Mapping (V-SLAM) and Visual Odometry (VO) are
proposed to solve the well-known problem of positioning,
which estimates vehicles’ position relative to its start point. As
an essential task in robotics and computer vision communities,
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VO has been widely applied to various applications, ranging
from autonomous driving and space exploration to virtual
and augmented reality. From the perspective of the camera
used, the VO methods consist of two types: stereo VO and
monocular VO. This work aims at investigating the monocular
VO, for a single camera is cheaper, lighter, and more general
than a stereo rig. Especially when the ratio of stereo baseline to
depth is minimal, the stereo VO degenerates to the monocular
one.

Over the past thirty years, enormous work has been done to
develop an accurate and robust VO system. The traditional VO
algorithms can be divided into the feature-based method and
the direct method. Feature-based methods typically consist of
camera calibration, feature detection, feature matching, outlier
rejection (e.g., RANSAC), motion estimation, scale estimation,
and optimization (e.g., Bundle Adjustment). Unfortunately,
how to detect appropriate features for recovering specific
motions remains a challenging problem. Handcrafted feature
descriptors such as SIFT [2], ORB [3] designed for general
visual tasks, lack the response to motions. Instead, extra
information that is guided by geometric prior such as planar
structures [4] and vanishing points [5], is used for camera
pose estimation in specific environments, providing promising
performance but limited generalization ability. Unlike feature-
based methods, direct methods track the motion of the pixel
and obtain pose prediction by minimizing the photometric
error, so it is extremely vulnerable to light changes. Moreover,
the absolute scale estimation in the traditional monocular
VO must use some extra information (e,g., the height of the
camera) or prior knowledge.

The emerging Deep Learning (DL), a data-driven approach,
has yielded impressive achievement in the computer vision.
Rather than handcrafted features, DL that has the ability to ex-
tract deep features from the plain input, encodes the high-level
priors to regress camera poses. Compared with traditional VO,
learning-based VO has the advantage of low computation cost
and no need for internal camera parameters. A few methods
on DL have been proposed for camera motion recovery, such
as DeepVO [6], ESP-VO [7], SfmLearner [8], and GeoNet
[9]. While achieving promising performances, they do not
take into account the different responses of visual cues and
the effect of pixels movement in different directions in the
input image to the camera motion, thus may output trajectories
with large error. For learning-based VO, it should focus more
on geometric constraints than the “appearance” information
when harnessing Convolutional Neural Networks (CNNs) to
extract features. Optical flow, as the representation of the
geometric structure, has been proved useful for estimating
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Frame to Frame (F2F) ego-motion. [10] takes the raw optical
flow calculated by Flownet [11] as the input of the pose
prediction network, which adopts the structure of FlowNetS
as the underlying CNN. Therefore, we take the optical flow
as input to the proposed model.

Guided by the previous considerations, we explore a novel
strategy for performing visual ego-motion estimation in this
work. Here, we extend the network into four branches focusing
on pixels movement in different directions in the optical flow
and then regress the global feature concatenated from the
four outputs to obtain F2F motion estimation. In particular,
features extracted by each branch have been distilled by using
the attention mechanism to refine estimation. In this paper,
many quantitative and qualitative experiments in terms of
precision, robustness, and computation speed are conducted.
The results demonstrate that the proposed model outperforms
many current monocular methods and provides a competitive
performance against the classic stereo VO. In summary, our
key contributions are as follows:
• Novel visual perception guiding ego-motion estimation:

By considering the four quadrants in optical flow and
fusing the distilling module into each branch encoder,
the learning-based DeepAVO model pays more attention
to the visual cues that are effective for ego-motion
estimation.

• Lightweight VO framework with enhanced tracking per-
formance: The proposed DeepAVO model framework
yields more robust and accurate results compared with
competing monocular VOs. The F2F VO calculation can
be done within 12 ms, making it practical and valuable
in real-world applications.

• Extensive fresh scenes validation: The DeepAVO pro-
duces promising pose estimation and maintains high-
precision tracking results on the 11-20 sequence of the
KITTI dataset and the Malaga dataset. Outstanding im-
provements in the accuracy and robustness of VO are
further demonstrated.

Our method outperforms state-of-the-art learning-based
methods and produces competitive results against classic al-
gorithms. Additionally, it works well in the new dataset,
where learning-based algorithms tend to fail due to different
feature characteristics. The rest of this paper is organized as
follows: Section II reviews some related works, and Section III
describes the proposed architecture in detail. The performance
of our approach is compared with many current methods in
Section IV. Finally, we conclude the paper in Section V.

II. RELATED WORKS

Visual odometry has been studied for decades, and many
excellent approaches have been proposed. In this section,
we discuss various algorithms and their differences from
others. There are mainly two types of algorithms in terms
of the technique and framework adopted: geometry-based and
learning-based methods.

A. Methods based on Geometry
Traditionally, the VO problem that relies on geometric con-

straints extracted from imagery can be solved by minimizing

reprojection errors or photometric errors. They can be further
categorized into feature-based and direct methods.

1) Sparse Feature based Methods: The standard approach
is to extract a sparse set of salient features(e.g., points, lines)
in each image; match them in successive frames, such as
the algorithms in ORB-SLAM2 [12] and LIBVISO2 [13];
robustly recover both camera motion using epipolar geometry;
finally, refine the pose through reprojection error minimization.
The majority of traditional VO algorithms [14] follows this
procedure, independent of the applied optimization framework.
A reason for the success of these methods is the availability
of robust feature detectors and descriptors that allow matching
between images even at the large inter-frame movement.

2) Direct Methods: Feature extraction and matching that
are key to determining the performance of sparse feature-based
methods are computationally expensive. However, outliers and
mismatch often cause VO algorithms to suffer from drifts
over time. Direct Methods [15] estimate structure and motion
directly from the intensity values in consecutive images under
the assumption of photometric consistency, e.g., DTAM in
[16]. The local intensity gradient magnitude and direction are
used in the optimization compared to sparse feature-based
methods that only use salient features without benefiting from
rich information in the whole image. Besides, semi-direct
approaches achieve promising performance in the monocular
VO [17] [18], which uses feature-correspondence to avoid
time cost of feature extraction from each frame and increase
accuracy in texture-less environments.

B. Methods based on Learning

Taking advantage of an overwhelming availability of data,
DL are utilized to learn motion model and explore VO
from sensor readings with deep learning techniques. Many
approaches without explicitly applying geometric theory have
been proposed to deal with the challenges in the classic
monocular VO systems such as feature extraction, depth
estimation, scale correction, and data association.

Some work based on Machine Learning (ML) techniques
has been proposed to solve the monocular VO problem. Taking
optical flow data as input, [19] that first tries to apply learning
methods in solving the VO problem trains a K Nearest Neigh-
bor (KNN) regressor for the monocular VO. [20] proposes
the SVR VO to regress ego-motion leveraging Support Vector
Machine (SVM) by introducing Gaussian Processes (GP),
of which the performance is far behind traditional methods.
However, it has been widely demonstrated that traditional ML
techniques are inefficient when encountering large or highly
non-linear high-dimensional data. DL that automatically learns
suitable feature representation from the large-scale dataset,
provides more promising performance. In this paper, we
mainly focus on DL-based monocular VO works.

1) Unsupervised methods: Mimicking the conventional
structure from motion, a number of algorithms that deal
with VO problem in an unsupervised manner have emerged.
SfmLearner [8] recovers the depth of scenes and ego-motion
from unlabeled sequences with view synthesis using photo-
metric error as supervisory signals. Its successor [21] extends
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Fig. 1. The architecture of the proposed DeepAVO based monocular VO system. In this figure, the details in our system are described. Note that an average
pooling operation is omitted before feeding the four parts of optical flow into CNNs.

this work to take stereo image pairs as input and recovers
the absolute scale with the known camera baseline. GeoNet
[9] proposes an unsupervised learning framework for jointly
estimating monocular depth, optical flow, and camera motion
from video.

These unsupervised methods learn from large amounts of
unlabeled data. Although it breaks through the limitation of
the requirement for large amounts of labeled data in supervised
learning, it can only process a limited number of consecutive
frames due to the fragility of photometric losses, resulting in
high geometric uncertainty and severe error accumulation.

2) Supervised methods: Recently, DL techniques such as
CNNs and RNNs have been utilized for pose estimation.
DeMoN [22] jointly estimates depth and motion from two
consecutive images by formulating structure from motion as
a supervised learning problem. [10] takes the raw optical
flow calculated by Flownet [11] as the input of the pose
prediction network, which adopts the structure of FlowNetS
as the underlying CNN. P-CNN VO [23] exploits the best
visual features and proposes a VO, which outperforms other
contemporary methods. Moreover, it is robust for the blur,
luminance, and contrast anomalies conditions. DeepVO [6]
recovers camera poses from image sequences by harnessing
LSTM [24] to learn historical information for current motion
prediction. Based on DeepVO, ESP-VO [7] extends into a
unified framework to directly infer poses and uncertainties.

The methods above take the visual cues in the whole image
equally. However, the movement characteristics of different
parts in images captured by the camera and the attention to
motion features extracted by the network are ignored.

III. SYSTEM MODEL

In this section, we introduce our framework (Fig. 1) in
detail. Considering the significance of geometric structure for

the VO task, we calculate the optical flow discussed in III-A
from the consecutive RGB images. The Encoder module in
III-B extracts high-level representations, which are further
distilled by the attention mechanism in III-C. We design the
loss function considering both the rotational and translational
errors in IV-B2.

A. Optical Flow Calculation

The essence of the ego-motion estimation leveraging the
video is quite different from other computer vision tasks,
which focuses more on geometric motion between images in
the video. In order to ensure that the proposed framework
could learn geometric feature representations, optical flow
calculation from consecutive images is conducted. The optical
flow depicts the pixel movement in the image captured by the
vehicle-mounted camera. In optical flow, the image from the
camera changes over time, and the image can be seen as a
function of time: I(t). Then, for a pixel located at (x, y) at
time t, its intensity value (i.e., the grayscale) can be written
as:

I(x, y, t) (1)

The optical flow calculation is based on the assumption of
photometric consistency. That is, the pixel intensity value of
the same spatial point is fixed in each image. For the pixel
located at (x, y) at time t, supposing that it moves to (x +
dx, y + dy) at time t+ dt, it has:

I(x+ dx, y + dy, t+ dt) = I(x, y, t). (2)

We can perform the first-order Taylor expansion on the left
side of Equation (2):

I(x+dx, y+dy, t+dt) ≈ I(x, y, t)+
∂I

∂x
dx+

∂I

∂y
dy+

∂I

∂t
dt.

(3)
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(a) Frame 1 (b) Frame 2 (c) Optical Flow

Fig. 2. Original frames and visualization of optical flow. (a) and (b) are the two frames in the KITTI Seq 08, and (c) is the corresponding Optical Flow
acquired from PWC-Net.

Based on the photometric consistency, the grayscale at the next
moment is equal to the previous, thus:

∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt = 0. (4)

Divide by dt, Equation (4) is further formulated as:

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
= −∂I

∂t
(5)

where dx
dt and dy

dt are the moving speed of pixels on the x-axis
and y-axis, respectively, denoted as u, v. ∂I

∂x is the gradient
of the image in the x-axis direction at this point and the other
term ∂I

∂y is the gradient in the y-axis direction, denoted as Ix,
Iy , respectively. It is the change of the image grayscale with
respect to time. Equation (5) can be written in a matrix:

[Ix, Iy]

[
u
v

]
= −It. (6)

In order to calculate the pixel motion u, v, the Lucas-
Kanade (LK) method assumes that the pixels in a window
of an image have the same motion. Considering a window of
size ω×ω, it contains ω2 number of pixels, so there are ω2

equations:

[Ix, Iy]k

[
u
v

]
= −Itk, k = 1, ..., ω2. (7)

This is an overdetermined linear equation about u, v. The
traditional solution is to find the least square solution:[

u
v

]∗
= −(ATA)−1AT b (8)

where

A =

 [Ix, Iy]1
...

[Ix, Iy]ω2

 , b =

 It1...
Itω2

 . (9)

In this way, we can get the moving speed of pixels between
images.

Traditional optical flow algorithms for high-precision VO
are widely applied, while most of them are computationally
intense and cannot meet the real-time requirements of the
system. Considering the performance of the proposed model
and the network calculation, we utilize a learning-based optical
flow extractor PWC-Net [25], which is known as a compact
but effective CNN model using simple and well-established
principles: pyramidal processing, wrapping, and the use of a
cost volume. Not only does PWC-Net reduce the model size,
but it also improves performance. We use the Pytorch version
of the network framework released by the original paper [25]

to calculate the pixel motion, as shown in Fig. 2. The process
can be described as:

F lot = F(it−1, it) (10)

where F lot∈RC×H×W denotes the optical flow at time t by
function F from two consecutive images it−1 and it. H , W ,
and C represent the height, width, and channel of obtained
optical flow where C = 2.

B. Encoder
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Fig. 3. The core architecture of the proposed network. The image is divided
into four quadrants, and each one passes through a chain of feature extractors
(FE1, FE2). To produce more robust visual features, we concatenate the
output of FE1 and FE2.

While many state-of-the-art models (e.g., VGGNet [27],
ResNet [28], and GoogleNet [29]) have yielded remarkable
performance in computer vision tasks, such as image classi-
fication, motion recognition, it is impractical to simply adopt
them to the VO task rooted in the geometry of images. The VO
task is on the basics of geometric constrains between video
frames, so the devised neural network should concern itself
with pixel motion characteristics in optical flow. Inspired by P-
CNN VO [23], four parallel CNNs of the proposed DeepAVO
are responsible for focusing on the pixel motion in different
directions to exploit local visual cues. In order to balance
the performance and computation complexity of the model,
each quadrant is down-sampled 4 times by using the Global
Average Pooling (GAP ) and then fed into a series of CNN
filters to extract motion features.

Each branch contains the same core architecture shown in
Fig. 3, and the detailed configuration is outlined in Table. I.
Four parallel core neural networks are trained simultaneously
as a whole DeepAVO. Two blocks of the core architecture, to
be specific, extract features in different levels: FE1 extracts
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σ
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AvgPooling

MaxPooling

AvgPooling

C σ

FC Layer Conv Layer

Input Feature Refined Feature

Channel Attention Spatial Attention

Fig. 4. The overview of CBAM [26]. The mechanism has two sequential sub-modules: channel and spatial. The intermediate feature map is adaptively refined
using this mechanism at each FE block in each branch. σ means the sigmoid function, and C denotes concatenation operation.

TABLE I
CONFIGURATION OF EACH BRANCH CNN.

Layer
Receptive

Field Size
Padding Stride

Number of

Channels

AVG 4 x 4 2 4 2

Conv1 9 x 9 4 2 64

Avgpooling1 4 x 4 2 4 64

Conv2 3 x 3 1 2 20

Avgpooling2 2 x 2 1 2 20

the coarser ones and FE2 extracts the finer details. Output of
two blocks are concatenated as the final feature map of branch:

Xi
t = V ec (FEi

1 (F loit))⊕ V ec (FEi
2 (FEi

1 (F loit))),

i = 1, 2, 3, 4
(11)

where V ec reshapes a 3D feature map into a vector for
following concatenation operation ⊕. Xi

t denotes the feature
vector that is encoded from the optical flow F loit in the
corresponding ith quadrant at time t. FEi

1 and FEi
2 denote

two feature extractors of the ith branch, respectively.
While Four quadrants depict the same motion, the pose

estimation can not rely on single quadrant because the limited
motion information in one quadrant causes the ambiguity
between simple turning and forward movement. Hence, we
concatenate four branches outputs into a feature vector con-
taining the global information. The fully connected layers,
shown in Fig. 1, give the F2F pose prediction using features
of all four quadrants at the same resolutions.

C. Distilling

In terms of the image processing domain, the attention
mechanism is proposed originally by DeepMind (”recurrent
models of visual attention”) for image classification [30].
It improves the performance of the model by reducing the
dependence on external information and capturing the internal
correlation of data or features. For the VO task, the attention
mechanism enables the model to concentrate on pixels in
distinct motion. Correspondingly, the weight of features in
the foreground and blurred part is decreased. Our approach
benefits from effective feature learning by incorporating an

attention module to selectively distill features for current F2F
pose inference.

There are many attention mechanisms, such as CBAM
[26], SENet [31], and Non-local neural networks [32] (Nloc).
Among them, SENet improves the representation ability of the
model by modeling the relationship between channels, that is,
assigning weights to the various channel features extracted
by the previous layer. CBAM that adds the spatial attention
mechanism on the basis of SENet, focuses on essential features
and restrains unnecessary ones to refine the distribution and
processing of information. Nloc directly integrates global
information, bringing richer semantic information to the fol-
lowing layers, but it will increase computation. The ablation
experiments on different attention mechanisms in Section IV
show that the proposed architecture combined with CBAM
performs better.

CBAM, as a dual attention mechanism, generates the factors
to recalibrate feature map in both channel domain and spatial
domain, as shown in Fig. 4. This process can be described as
two operations:

M ′ = σ(MLP (AP (M)) +MLP (MP (M)))�M (12)

M ′′ = σ(f7×7[AP (M ′),MP (M ′)])�M ′ (13)

where � denotes element-wise multiplication, σ is the sigmoid
function, f7×7 is a 7×7 convolutional layer, AP , MP , and
MLP mean average pooling, max pooling, and a dense
layer. M∈RC×H×W is a feature map. M ′∈RC×H×W and
M ′′∈RC×H×W are the channel-refined and spatial-refined
feature maps, respectively.

In this paper, the CBAM is implemented after the convo-
lutional layers in FE1 and FE2. Fig. 5 presents how CBAM
guides the VO. We calculate the difference between distilled
feature map and original feature map, called the differential
matrix, which is visualized in Fig. 5(d). Because activation
function (i.e., Sigmoid) in Equation (12) and Equation (13)
projects the attention maps into the range of 0 to 1, values of
elements in the distilled feature map are smaller than original
ones. Therefore, The zone where elements are closer to 0
(the brighter color in visualization) is given more attention.
It can be observed that the CBAM focuses more on objects
close to the camera (pixels with obvious motion), such as the
stationary car at the crossroads and the trees on the roadside,
corresponding to the red boxes in Fig. 5(c). This demonstrates
the CBAM has the ability to assist the Encoder in distilling
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(a) The first quadrant of Frame 1 (b) The first quadrant of Frame 2

(c) Sub optical flow
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7.5
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5.0

(d) The differential matrix

Fig. 5. Implementation of the CBAM [26] in the first branch of the DeepAVO.
(a) and (b) are the first quadrant of Fig. 2(a) and Fig. 2(b). (c) is corresponding
sub optical flow calculated from PWC-Net [25], and red boxes indicate the
zone where pixel movement is intense. (d) is differential matrix between
features after and before using CBAM in FE1.

the more effective representations from redundant features for
pose estimation.

D. Loss Function

KITTI dataset [33] was collected by a car whose motion
model can be simplified as the motion on a 2-dimensional
plane [10]. The Y-axis for elevation is left out because the
elevation differences are at least an order of magnitude smaller
than the movement in the other axes. The dataset provides
ground truth odometry information as a series of 3 × 4
transformation matrices that transform the first frame of a
video sequence into the coordinate system of the current
frame. The transformation matrix is formed by concatenating
the rotation matrix (i.e., Rt) and the translation vector (i.e.,
Tt), which are defined in Equation (14) and Equation (15),
respectively.

Rt =

Rt,1, Rt,2, Rt,3

Rt,4, Rt,5, Rt,6

Rt,7, Rt,8, Rt,9

 (14)

Tt =

Tt,XTt,Y
Tt,Z

 (15)

From this set of data, by decomposing the rotation matrix
to find the difference between angles, the incremental angle
change (i.e., ∆ϕt) can be calculated, as shown in Equation
(16). The incremental distance change (i.e., ∆pt) is gained by
calculating the Euclidean distance between the translational
parts of the transformation matrices, as shown in Equation
(17).

∆ϕt = arctan(Rt,3,
√

(Rt,1)2 + (Rt,2)2 ) −

arctan(Rt−1,3,
√

(Rt−1,1)2 + (Rt−1,2)2 )
(16)

∆pt =
√∑

(Tt − Tt−1)2 (17)

For each optical flow input, the model regresses an angle and a
distance to represent the displacement and orientation changes
of the camera. This converts global transformation data into
an ego-motion format in which small changes are accumulated
over time.

The proposed network architecture based on the DeepAVO
system can be considered to compute the conditional proba-
bility of the F2F poses Yt, given the optical flow data F lot
at time t. To find the optimal parameters θ∗ for the model,
DeepAVO maximizes conditional probability:

θ∗ = arg max
θ

p(Yt|F lot;θ) (18)

To learn the parameters θ, the Euclidean distance between
the ground truth pose (pt, ϕt) at time t and its estimated one
(p̂t, ϕ̂t) is minimized. The loss function is composed of Mean
Square Error (MSE) of the position and orientation:

θ∗ = arg max
θ

1

N

N∑
t=1

‖ p̂t − pt ‖22 +α ‖ ϕ̂t − ϕt ‖22 (19)

where ‖ ‖2 is 2-norm, and N is the number of samples. α is a
scale factor to balance the weights of translations and rotations.
The better performance can be achieved by our model when
setting α = 100. Detailed reasons and analysis are presented
in Section IV-B2.

The displacements and angles computed for the optical flow
are independent of the previous or next frame in the video
sequence. However, The evaluation of the model needs to
convert the pose predicted by the DeepAVO into the KITTI
odometry benchmark format. The process can be described as:

[
R | T

]
t

=

 cos(ϕt) 0 − sin(ϕt) Tt,X
0 1 0 0

sin(ϕt) 0 cos(ϕt) Tt,Z

 (20)

where ϕt, and Tt,X , Tt,Z are accumulated angle and distance,
We update them as follows:

ϕt = ϕt−1 + ∆ϕt−1

Tt,X = Tt−1,X + ∆pt cos(ϕt)

Tt,Z = Tt−1,Z + ∆pt sin(ϕt)

(21)

At the start of every sequence, the camera position is initialized
at the origin of an XZ coordinate system, with X and Z as the
2D movement plane. Starting from the origin, the next position
is accumulated by applying the angle and displacement to the
current position, thereby obtaining the absolute pose to origin
to plot the driving path and evaluate the model performance.

IV. EXPERIMENTS

In this Section, we first discuss the implementation details
of our framework in Section. IV-A. Next, we compare the
proposed DeepAVO with state-of-the-art approaches on the
KITTI benchmark [33] and the Malaga dataset [34] in Section.
IV-B and Section. IV-C, respectively. Finally, since the real-
time operation is critical for robotic applications and learning-
based methods are generally considered to be computationally
expensive, we also discuss the real-time performance of the
DeepAVO in Section. IV-D.
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Fig. 6. The trajectories of ground truth, VISO2-M, VISO2-S, and our model DeepAVO on Sequence 03, 05, 07, and 10 of the KITTI benchmark. Especially,
this figure highlights the vital role of the attention module through the performance of the model with and without attention mechanism.

A. Implementation

1) Dataset: The KITTI dataset contains 22 video sequences
captured in urban and highway environments at a relatively
low sample frequency (10 fps) at the driving speed up to
90 km/h. It is very challenging for the VO monocular task.
Sequence 00-10 associate with the ground-truth measured and
calibrated by GPS, while the other 10 sequences (Sequence
11-21) are only provided with raw images. The size of
raw images between different sequences does not remain the
same. For example, the images of the Sequence 00-02 is
1241×376 pixels, while the Sequence 04-11 is 1226×370. In
our experiments, the size of left RGB images are unified into
1226*370 for training and testing.

2) Training and Testing: Two sets of experiments are
conducted separately to evaluate the proposed method on the
KITTI dataset. The first one is based on Sequence 00-10 to
quantitatively and qualitatively analyze the model performance
by using ground truth since ground truth is only provided for
these sequences. We adopt the same train/test split as DeepVO
[6] and ESP-VO [7] by using Sequence 00, 01, 02, 08, 09
for training, which are relatively long. The trajectories are
converted into optical flow data by PWC-Net [25] for training.
The trained model is tested on Sequence 03, 04, 05, 06, 07,
and 10 for evaluation.

Another experiment aims to evaluate the generalization
of the DeepAVO: the ability of a learning-based method
to maintain the performance in a totally new environments.
Therefore, models trained on all Sequence 00-10 are tested on
Sequence 11-21, where there is no ground truth to train. In
order to further analyze the generalization of the DeepAVO in
the different datasets for a cross-dataset validation, the Malaga
dataset [34] is used to test the model trained on Sequence 00-
10 of the KITTI dataset.

3) Network: The network is implemented by the
Tensorflow-1.9.0 framework [35] on an NVIDIA Geforce

Titan XP GPU. Adam [36] with β1 = 0.9, β2 = 0.99 is used
as the optimizer to train the network for up to 70 epochs
with a batch size of 48. Besides, Batch Normalization and
Xavier weight initialization are used to make the network
converge faster and better. The initial learning rate is set to
1×10−4 and reduce by half every 15 epochs. Dropout and
early stopping technologies are introduced to prevent the
model from overfitting.

B. Results on the KITTI dataset

We compare the DeepAVO with several state-of-the-art
VO algorithms, including the traditional method VISO2 [13]
(VISO2-M and VISO2-S) and the learning-based monocular
models such as DeepVO [6], ESP-VO [7], SfmLearner [8], and
GeoNet [9]. To highlight the efficiency of the attention mech-
anism, we also consider the DeepAVO Less (i.e., our model
without attention), and DeepAVO SE and DeepAVO Nloc us-
ing different attentions as the competitive methods. We follow
the error metrics where averaged Root Mean Square Errors
(RMSE) of the translational and rotational errors are adopted
for different lengths of sub-sequences, ranging from 100, 200
to 800 meters, and different speeds (the range of speeds
varies in different sequences). The detailed performance of the
algorithms on the testing sequences is summarized in Table.
II.

1) Qualitative and quantitative analysis: Most monocular
VO methods cannot recover the absolute scale and require
pose alignment with ground truth. The open-source VO library
VISO2 [13] leveraging the height of the camera (VISO2-M)
and stereo information (VISO-S) to estimate scale is adopted
as the baseline method. Note that for DeepAVO, the scale
learned in end-to-end training is completely maintained by
the model itself without considering any prior knowledge
and pose alignment. This indicates that the learning-based
VO has an appealing advantage over other monocular VO.
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TABLE II
RESULTS ON THE KITTI DATASET.

Method
Sequence

03 04 05 06 07 10 Avg

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

VISO2-S [13] 3.21 3.25 2.12 2.12 1.53 1.60 1.48 1.58 1.85 1.91 1.17 1.30 1.89 1.96

VISO2-M [13] 8.47 8.82 4.69 4.49 19.22 17.58 7.30 6.14 23.61 29.11 41.56 32.99 17.48 16.52

SfmLearner [8] 10.78 3.92 4.49 5.24 18.67 4.10 25.88 4.80 21.33 6.65 14.33 3.30 15.91 4.67

GeoNet [9] 19.21 9.78 9.09 7.54 20.12 7.67 9.28 4.34 8.27 5.93 20.73 9.04 13.12 7.38

DeepVO [6] 8.49 6.89 7.19 6.97 2.62 3.61 5.42 5.82 3.91 4.60 8.11 8.83 5.96 6.12

ESP-VO [7] 6.72 6.46 6.33 6.08 3.35 4.93 7.24 7.29 3.52 5.02 9.77 10.20 6.12 6.15

DeepAVO Less 6.56 2.59 3.95 1.40 7.41 3.36 13.72 5.32 8.47 4.80 12.32 3.99 9.16 3.83

DeepAVO SE 7.75 2.14 4.52 1.44 3.85 1.66 8.15 2.58 6.24 4.95 6.58 2.50 5.39 2.26

DeepAVO Nloc 10.55 2.58 4.98 1.18 5.01 1.84 15.00 6.02 11.25 3.52 9.14 3.15 8.14 2.91

DeepAVO CBAM 3.38 1.96 5.70 0.98 3.31 1.36 7.43 2.55 3.31 2.57 6.15 2.67 4.43 1.88

• trel: average translational RMSE drift (%) on length from 100, 200 to 800 m.
• rrel: average rotational RMSE drift (◦/100m) on length from 100, 200 to 800 m.
• For these learning-based monocular VO algorithms mentioned above, DeepVO [6], ESP-VO [7], and our model are supervised methods trained on

Sequence 00, 01, 02, 08, and 09. SfmLearner [8] and GeoNet [9] are trained on Sequence 00-08 in an unsurprised manner. The results of SfmLearner is
from [37], while for GeoNet, the poses are recovered from the officially released pre-trained model. The best results are highlighted without considering
stereo VISO2-S [13].
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Fig. 7. Average errors across sequence lengths (a and b) and speeds(c and d) on test sequences of DeepAVO and competitive approaches.
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Table. II suggests that our model, even with the vanilla version
(i.e., DeepAVO Less), outperforms VISO2-M in terms of both
rotation and translation estimation, and the attention usage
widens this margin further. A visualization of trajectories
corresponding to the previous testing is illustrated in Fig. 6.
DeepAVO CBAM achieves very close performance to VISO2-
S trained on stereo images. For DeepAVO Less, although
achieving promising performance in regular environments (Se-
quence 03), it still bears large scale drift in complicated scenes
(Sequence 05, 07, and 10).

Table. II also compares the proposed DeepAVO series with
the other four learning-based methods. The rotation error of
DeepAVO Less is distinctly lower than four state-of-the-art
monocular VOs, but the translation estimation still does not
come up to the accuracy of DeepVO and ESP-VO. It reveals
that a comprehensive analysis of pixel motion in different
quadrants of optical flow can elevate the performance with
which the model estimates the rotation. We assume that
extracting motion-sensitive features directly from the encoded
features may limit the accuracy. Fortunately, this deficiency is
compensated by our proposed architecture that combines the
attention mechanism to distill features, which are conducive
to motion estimation. It can also be observed that compared
with other learning-based methods, the translational error and
rotational error with the DeepAVO can be improved by up to
21% and 59%, respectively.

In order to find out the attention mechanism that is prefer-
able in guiding the VO task, we also discuss the diverse per-
formance of models with different attention modules. Among
these models, Unlike Nloc, SE and CBAM exploit the corre-
lation and dependence between features to distill information
that is of great value to ego-motion estimation. The experi-
mental results in Table. II demonstrate the effectiveness of this
mechanism for the VO task. The additional spatial constrain
by CBAM, which preserves the valuable spatial features and
suppresses the useless ones, allows DeepAVO CBAM gives
the best performance to the DeepAVO framework.

We further evaluate the average RMSE of the estimated
translation and rotation against different path lengths and
speeds in Fig. 7. As the length of the trajectory increases,
the errors of both the translation and rotation of the DeepA-
VO (DeepAVO mentioned later refers to DeepAVO CBAM)
decrease, far exceeding other monocular methods, as shown
in Fig. 8(a) and Fig. 8(b). It can also be observed that
the performance of DeepAVO is outstanding in handling
various speed situations except for the translational errors at
high speeds (Fig. 8(c)), which are slightly higher than the
monocular VISO2-M. This may be due to the fact that the
maximum velocity of the Sequence 00, 02, 08, and 09 is
below 60km/h, and the number of training samples with speeds
higher than 60km/h is very limited (only some in Sequence
01). Without enough training samples covering the high-speed
situation, the model probably suffers from high drifts. This
can be easily addressed by the additional training dataset with
similar moving speeds in real-world applications. By contrast,
the rotational error of the DeepAVO shows a downtrend with
the increasing speed in Fig. 8(d). We presume that this is
because the KITTI dataset recorded during car driving tends

to go straight at high speeds. Moving forward at high speed,
as a state without an obvious change in rotation, can be easily
learned to model.
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Fig. 8. The trajectories estimated by the models trained under the balance
parameter α set to 10, 50, 100, and 150.

2) The influence of balance parameter α in the Loss func-
tion: For the KITTI benchmark, the rotation in the F2F pose
is two orders of magnitude smaller than the displacement.
In order to better balance the estimation in translation and
rotation, we test the influence of balance parameter α in the
loss function () on the results. Theoretically, the rotational
error can be reduced by our model when given a larger balance
parameter to raise the weight of the rotational portion in
the loss function. We compare the results with the balance
parameter set to 10, 50, 100, and 150.

Fig. 8 illustrates the qualitative comparison. For trajectories
with the less intense change in rotation, our model performs
similarly under different balance parameters(Sequence 03, 10).
However, the rotation balance can help improve the model’s
performance in complex scenes (Sequence 05, 07). In this
work, we take α=100 as the final setting due to its promising
results in both rotation and translation.

3) Model Generalization ability in the 11-20 sequence:
Although the generalization of the DeepAVO model has been
evaluated in the previous experiments, in order to investigate
further how it performs in different motion patterns and scenes,
the model is tested on Sequence 11-20 of the KITTI dataset.
In this case, the DeepAVO model is trained on Sequence 00-
10, providing more training samples to avoid overfitting and
maximizing the generalization ability of the network. Due to
the lack of ground truth for these testing sequences, similar to
DeepVO [6] and ESP-VO [7], we use stereo VISO2-S [13] as
reference.

The predicted trajectories of results are illustrated in Fig.
9. VISO2-M suffers from severe error accumulation, while
monocular ORB-SLAM2 [12](without loop closure) partially
alleviates the problem with local bundle adjustment and a
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Fig. 9. Trajectories of VO results on the testing Sequence 11-20 of the KITTI VO benchmark (no ground truth is available for these testing sequences). The
DeepAVO model used is trained on the whole training dataset (00-10) of the KITTI VO benchmark, Its scales are recovered automatically from the neural
network without alignment to ground truth.

global map to assist tracking. It can be seen that the results of
DeepAVO are much better than VISO2-M’s and roughly sim-
ilar to the stereo VISO2-S’s. It seems that this larger training
dataset improves the performance of DeepAVO. Considering
the stereo characteristics of stereo VISO2-S, DeepAVO, as a
monocular VO, has achieved appealing results, indicating that
the trained model has a good generalization ability in new
scenes.

C. Results on the Malaga dataset

Malaga urban dataset [34], similar to the KITTI dataset, is
gathered entirely in urban scenarios by the sensors mounted on
the vehicle. It provides stereo images captured at 20Hz along
with data from IMU, GPS, etc. In this paper, we only use the
left image of the camera to test the pre-trained model. Since
the image size of Malaga (1024 × 768) is different from that

of KITTI, Malaga images are resized and then cropped to the
KITTI image size.

In order to further evaluate the generalization of the DeepA-
VO under entirely new scenarios and data collecting platform,
the Malaga dataset is used to directly test the model (DeepAVO
trained on Sequence 00-10 of KITTI dataset) as a cross-
dataset validation without any training or fine-tuning. Fig.
10 shows the testing results on the Malaga dataset (Malaga
03, 07, and 09 sequences) and sparse ground truth provided
by GPS. DeepAVO outperforms the VISO2-M and learning-
based ESP-VO. The pose estimation of the DeepAVO is as
good as stereo VISO2-S, both of which approximate the
trajectories reconstructed by GPS, no matter in the regular
or complicated scenes. The experiment verifies that although
the dataset is collected by different devices (e.g., cameras and
cars) in completely fresh environments, the DeepAVO can
present promising generalization performance.
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Fig. 10. Testing results on the Malaga dataset without any training or fine-tuning. The DeepAVO used is only trained on Sequence 00-10 of the KITTI.

D. Computation Cost
Since the real-time operation is critical for robotics applica-

tions such as autonomous driving, and learning-based methods
are generally considered to be computationally expensive and
time-consuming, we also discuss the real-time performance
of the DeepAVO. An NVIDIA Geforce Titan XP GPU and
a desktop (Intel(R) Core(TM) i7-8700 CPU@3.20GHz and
16GB RAM) are used to compute the runtime of online
inference on GPU and CPU, respectively.
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Fig. 11. Time cost distribution of DeepAVO. The blue line denotes average
CPU time cost (53ms), while the red line denotes average GPU time cost
(12ms). Note that 1000 frames are selected for statistics, and this analysis
only involves odometry calculation.

We select 1000 consecutive frames in the KITTI dataset
to calculate the average time cost of the DeepAVO. The

histogram of per-frame runtime in second on both GPU and
CPU is shown in Fig. 11. Note that this time analysis only
involves odometry calculation. It can be seen that per-frame
runtime for each prediction is between 5 ms and 30 ms on
the GPU, while between 30 ms and 140 ms on the CPU. The
average per-frame runtime is about 12 ms and 53 ms on GPU
and CPU, respectively. Optical flow calculation takes 30ms per
frame on average using GPU. Therefore, DeepAVO is capable
of running at up to 24 fps on GPU, which is obviously higher
than the images sampling rate (10 Hz). Compared with the
online inference discussed here, the offline inference that can
load multiple images at each time (batch size is greater than
1) is usually much faster thanks to parallel computing.

V. CONCLUSION

In this paper, we present a novel framework that contains
four parallel CNNs focusing on four quadrants of optical
flow for learning monocular visual odometry in an end-to-end
fashion. In the framework, we incorporate a helpful attention
component called CBAM, which distills the feature extracted
by the Encoder in terms of channel and spatial aspects and
ameliorates previous results. The refined features propagating
global information through concatenating local cues of four
branches further improve the pose estimation. The extensive
experiments on two different datasets collected during out-
door car driving verify that the DeepAVO outperforms many
learning-based and traditional monocular VO methods and
gives competitive results against the classic stereo VISO2-
S algorithm, which highlights the promising generalization
ability of the model. Besides, based on the computation cost
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analysis, it has been demonstrated that the DeepAVO can pro-
duce accurate and generalized results with low computational
consumption.

In the future, we will focus on developing a complete
SLAM system utilizing the attention mechanism and recur-
rent convolutional neural network (RCNN) to achieve better
performance. Moreover, SPP-Net [38] will be introduced into
our system to tackle the fixed input image size problem.
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