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Abstract— Loop Closure Detection (LCD), also known as the place
recognition of pre-visited areas, is a significant optimization module
in visual simultaneous localization and mapping (vSLAM) to reduce
the accumulative error over time. This paper presents a novel end-
to-end framework (MetricNet) for LCD to enhance the detection per-
formance on complex and changeable scenes. Specifically, Metric-
Net introduces adaptive weighted similarity matrix by combining the
feature extraction module and the similarity measurement module
to focus on changing appearance over time. Experiments on three
typical open datasets demonstrate that the proposed MetricNet
outperforms state-of-the-art learning-based methods in terms of
precision by up to 15% - 40% and recall rate by 10% - 30%, proving
its promising generalization ability, applicability, and suitability for real-world applications.

Index Terms— Simultaneous localization and mapping, Loop closure detection, Appearance variation, Convolutional
neural network, Adaptive weighted similarity matrix

I. INTRODUCTION

V ISUAL simultaneous localization and mapping (vSLAM)
that simultaneously recovers camera pose and scene

structure from video, as one of the key autonomous positioning
and navigation technologies in areas where GPS fails or cannot
be covered, is gaining importance in robotic applications such
as autonomous cars or unmanned aerial vehicles [1]. Loop
Closure Detection (LCD), considered one of the essential parts
in the visual SLAM system, is designed to recognize pre-
visited areas by an autonomous mobile robot according to the
image information collected by the visual sensors during the
moving so also known as visual place recognition. Accurate
LCD methods offer precise pose estimation by introducing
extra constraints to correct the trajectory drift over time,
improving the system performance [2]. However, there are
still two common challenges: 1) the same place has different
appearances at different times due to change of illumination
and weather; 2) different scenes look similar for reasons such
as sharing common objects. Therefore, an excellent LCD
method needs to resolve these two problems to detect more
correct loops.

In the field of vSLAM, the appearance-based methods
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treating LCD as an image matching problem compare the
similarity between the current image and previous images. If
the similarity between them is sufficiently high to exceed a
given threshold, we can regard it as a loop closure. As one of
the most popular LCD approaches, it can be divided into two
crucial steps: feature generation and similarity measurement
[3].

In the vSLAM system, image feature extraction forms
the basis of a series of tasks, such as keyframe extraction,
tracking, positioning, and map construction, which have a
decisive influence on the robot’s autonomous positioning. The
traditional appearance-based methods mainly follow the visual
bag-of-words (BoWs) [2], [4] model, which uses a clustering
procedure on a training sample of local features and quantizes
the descriptor space into Visual Words (VWs). However, this
approach uses hand-crafted traditional features. Most of these
features discard certain geometric and structural information,
making it difficult to cope with the challenges such as camera
motion and illumination changes. Moreover, BoWs relies on
specific environments and has poor robustness to different
application scenarios. In recent years, deep learning has made
significant breakthroughs in the field of computer vision.
Much related research demonstrates that the deep features
learned by convolutional neural networks (CNNs) can provide
more robust image representations in changeable environ-
mental conditions, especially when illumination change and
viewpoint variation [5]. Besides, the network models trained
for specific tasks can be transferred to other tasks successfully.
Some classic pre-training network models’ availability makes

Page 2 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

it more convenient to complete various feature extraction
tasks [6]. Based on the above reasons, researchers began to
apply CNNs to LCD [7]–[9]. Although good results have
been achieved, these works paid little attention to similarity
measurement strategies, which also play a crucial role in image
matching tasks. Fixed pre-specified distance metrics such as
Euclidean distance or cosine similarity are commonly used.
Moreover, feature extraction exists independently of similarity
measurement, its effectiveness severely restrains the similarity
measurement’s effect. For these reasons, further improvement
of detection precision is hindered.

This paper proposes a two-branch end-to-end network called
MetricNet that performs LCD based on the adaptive weighted
similarity matrix, jointly optimized with feature extraction,
to address the issues mentioned earlier. In summary, the key
contributions are as follows:
• Adaptive feature selection and similarity matrix: By using

the channel weighting to remove the irrelevant back-
ground information and a weighted similarity matrix to
adaptively select spatial information, MetricNet has been
proved to be more robust and accurate than competitive
models in both theory and practice.

• An end-to-end LCD framework: this research also pro-
poses a novel LCD framework that encompasses both
feature extraction and similarity measurement to extract
more effective representation. The learning-based Metric-
Net can achieve a recall rate up to 47.08% under 100

• Extensive multi-dataset validation: MetricNet has proved
its excellent performance on three typical open datasets
under drastic illumination and seasonal variations. Out-
standing improvements in detection accuracy and gener-
alization ability are also further demonstrated.

The remainder of this paper is organized as follows: In
Section II, a brief introduction on the feature extraction
and similarity measurement are provided. Section III focus-
es on the proposed architecture and methodology. Section
IV presents experimental results and comparisons on three
datasets. Finally, the conclusion of this paper is drawn in
Section V.

II. RELATED WORK

This paper focuses on LCD based on images. Researchers
have proposed many effective approaches to implement it,
and the simplest one is by matching keyframes through the
similarity between them. In this case, detecting a loop is
essentially an image matching problem, including feature
extraction and similarity measurement. And this section will
briefly review representative research in terms of how it is
related to our work reported in this paper.

A. Feature Extraction
The study of the feature extraction method has been of

interest to researchers for some time. Earlier works on feature
extraction tended to adopt features artificially designed by
researchers in the field of computer vision, such as SIFT
[10], SURF [11], ORB [12] and BRIEF [13], etc. The visual
image descriptors are usually divided into two categories: local

descriptors and global descriptors, and in which, BoWs is
the most successful as mentioned in Section I. It clusters
extracted local features into ”words” by k-means and describes
images in the ”words” vector. The BoWs descriptors have been
successfully applied to LCD under various scenarios and have
achieved outstanding results. Especially Cummins et al. [14]
proposed FAB-Map, which represents the high level of the
current development of loop detection. It extends the BOWs
model and learns a generation model using the data of BOW.
This method is not limited to positioning but can determine
whether new observations come from places already on the
map or not previously seen and can solve the perception bias
well. Fisher Vector (FV) [15] constructs a visual dictionary us-
ing the Gaussian Mixture Model (GMM). It describes images
using the gradient vector of the likelihood function of GMM,
where the Gaussian component is similar to the clustering
center in BoW. Vector of Locally Aggregated Descriptors
(VLAD) [16] is a simplification of FV. Unlike FV, VLAD
accumulates the image’s residuals on the cluster center and
combines them of each cluster center as an image descriptor.
BoWs, FV, and VLAD are all based on local descriptors.
Different from them, GIST [17] uses Gabor filters to generate
low-dimensional global image descriptions. However, based on
hand-crafted features, these image descriptors discard certain
geometric and structural information, making it difficult to
cope with the challenging environment such as intense camera
motion and illumination change.

The emergence of deep learning has accelerated the devel-
opment of relevant technologies of computer vision. Feature
extraction methods based on deep learning have achieved great
success in image recognition [18], classification [19], and
retrieval [20], which provides a new way to address LCD
problem and has attracted intensive attention form researchers.
To construct a descriptor that can better describe images, Xi-
ang Gao et al. [21] took advantage of Auto-encoder to extract
image features and used the similarity matrix to detect closed
loops, which improved the impact of illumination variation
and got high accuracy on open datasets. Yi Hou et al. [9]
proposed to use the convolutional neural network (CNN) to do
it. They performed a comprehensive evaluation of the outputs
at the intermediate layers of a CNN as image descriptors. The
results showed that the abstract high-level features extracted
from multi-layer neural networks outperformed state-of-the-art
competitors when lighting changes significantly. They were
also considerably faster to extract than the state-of-the-art
hand-crafted features even on a conventional CPU and are two
orders of magnitude faster on an entry-level GPU. To get better
recognition results, Kai Qiu et al. [22] proposed the Siamese-
ResNet network, which combines the Siamese network with
ResNet to detect loop closure. Compared with FabMap2.0,
Siamese-ResNet shows higher accuracy, better robustness, and
less time-consuming. These above methods all show that
CNNs have more potent power to characterize images; the
deeper features learned by CNNs are significantly superior
to hand-crafted features in visual tasks. They can provide
more robust image representation in changeable environmental
conditions, especially when illumination change and viewpoint
vary.
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Fig. 1. The pipeline of the proposed MetricNet.

B. Similarity Measurement
Similarity measurement is a significant step in loop clo-

sure detection, which is generally measured by the distance
between descriptors of images and determines whether the
images are captured from the same place. If the distance
between the two images is less than a given threshold, then
a loop closure is considered to have occurred. There are
three commonly used types of distance metrics: Euclidean
distance, cosine distance, and hamming distance. To evaluate
the effectiveness of different measures, Shahid et al. [23]
retrained pre-trained Places-AlexNet using the sizeable open
dataset Nordland. They compared several distance measure-
ments: pairwise Euclidean, pairwise cosine, triplet Euclidean,
and triplet cosine. The experiment demonstrates that cosine
distance has a better performance than Euclidean distance
and better works in recognizing scenes. However, the afore-
mentioned fixed distance metrics are based on the given off-
the-shelf features and only compare the surface similarity of
features at the element level. Also, these methods completely
separate feature extraction and similarity measurement so that
the measurement results of similarity will be significantly
affected by the effectiveness of features. In this paper, unlike
the currently available research, we join feature extraction
forces with similarity measurement to use the similarities of
feature patches to constitute a similarity matrix that contains
the spatial information of pictures. Experiments show that the
algorithm has better generalization in the similarity measure-
ment step.

III. SYSTEM MODEL
In this session, we first describe the overview of the pro-

posed method’s framework and then introduce each module in

detail.
This paper uses the SAES metric layer from Chenyang

Zhao et al. [24] as a reference that introduced an end-to-end
network into loop closure detection. The proposed improved
network called MetricNet, mainly involves two modules: a
feature extraction (FE) module and a similarity metric (SM)
module, as shown in Fig. 1. The neural network input is an
image pair composed by current image I1 and previous I1
with label 1 or 0, which indicates whether this pair is a loop
closure or not. There are two identical branches in the FE
module with shared weights, which map the image pair into
the feature space and divide them into four equal patches,
respectively. And then the feature of a single image sent into
the SM module can be represented as (f1, f2, f3, f4). The
following SM module will give a value in the range of 0 to 1
as the verdict on the image pair’s similarity. Finally, we can
determine whether a loop closure occurs on the output of the
SM module.

A. Feature Extraction
We employed the AlexNet [25], a state-of-the-art framework

for computer vision tasks, as our feature extraction module,
as shown in Fig. 1. There are 5 convolution layers containing
ReLU activation function and max-pooling followed by three
fully connected layers and a subsequent soft-max layer. While
the capability of extracted representations is enhanced as
the neural network goes deeper, it has been demonstrated
in [9] that the features extracted from the fully connected
layers cannot make ideal representations due to the loss of
spatial information in the image. Therefore, our module only
preserves the 5 convolution layers (5CONVs), discarding the
subsequent fully connected layers and the softmax layer.
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Considering the equal treatment towards feature extracted
from the part with different distinguishability could lead to
more false positives in loop closure detection, weights for
scenes whose distinguishability is relatively small, such as the
sky and ground, should be reduced. Inspired by [26], we adopt
the self-adaptive channel weight (CW), which is similar to the
inverse documentary frequency (IDF) in BOW, to draw the
attention of our module to the low-frequent features, which
are more differentiated. The CW is defined as:

Tc =

∑
Xh,w>0 1

H ×W
(1)

CWc =

 log(

∑C
c=1 Tc
Tc

),Tc > 0

0,Tc = 0

(2)

where H, W denotes the size of a feature map. X ∈ RH×W

represents one feature map. c, h, w is the location of the
feature. Tc denotes the average response of the feature of the
c-th channel. CWc denotes the weight of the c-th channel.

Then we can calculate the weighted feature-maps Fweight

as follows:
Fweight = F × CW (3)

where F ∈ R(C×H×W ) denotes the 3-dimension features of
the 5CONVs.

B. The Adaptive Weighted Similarity Matrix
To use the spatial information of image pairs to improve

the ability to cope with the appearance changes caused by
illumination or seasons, we divide the obtained feature map
into four equal patches and calculate each patch’s similarity
to form the similarity matrix. It takes advantage of the natural
properties of convolutional network sliding Windows, which
is that there are some overlaps between the windows and
preserves the context at the patches’ boundary. The final
similarity between the two images is determined by the data
distribution in the similarity matrix.

For a given image pair, the corresponding features obtained
by dividing the feature map are F 1

weight and F 2
weight:

F i
weight = {fi1, fi2, fi3, fi4}, i ∈ [1, 2] (4)

where fij represents the features generated from the j-th fea-
ture map patch of the i-th image. The cosine between feature
vectors can express the similarity between image patches:

SMij = cos < f1i, f2j > (5)

where f1i and f2j are the feature descriptors of 2 feature map
patches, respectively. SMij is the similarity between feature
map patches. The larger the cosine is, the more similar the
feature patches are. Finally, the whole similarity matrix SM is
given by:

SM = F 1
weight · (F 2

weight)
T = {SMij , 0 ≤ i ≤ 3, 0 ≤ j ≤ 3}

(6)

(a1) winter1 (a2) summer1 (a3) winter2

0 1 2 3

0
1

2
3

0.0

0.2

0.4

0.6

0.8

1.0

(b1) similarity matrix of winter1 and
summer1

0 1 2 3

0
1

2
3

0.0

0.2

0.4

0.6

0.8

1.0

(b2) similarity matrix of summer1
and winter2

Fig. 2. The input images and the corresponding similarity matrixes.
Winter1 in (a1) and summer1 in (a2) are a positive pair, summer1 in
(a2), and winter2 in (a3) is a negative pair.

The matrix reflecting the similarity between feature patches
of image pairs are visualized in Fig.2 in which the gray value
represents the extent of the similarity. In Fig. 2(b1), the values
on diagonal are obviously overall higher than those on off-
diagonal, while values do not show such a pattern in Fig.
2(b2). It means that positive pairs and negative pairs can be
distinguished with a resort to such characteristics.

Based on the similarity matrix’s data distribution, this paper
proposes an adaptive weighted similarity measurement method
and defines the overall similarity S of the image pair as:

S = α
3∑

i=0

ωiSMii (7)

where SMii is the similarity of patches with the same index,
α represents the probability that the image pair come from the
same location, and ωi is the weight of the diagonal elements
and satisfies the following formula:

3∑
i=0

ωi = 1 (8)

According to the previous analysis, whose values on di-
agonal in the similarity matrix are significantly greater than
off-diagonal, it is very likely to be a positive pair. Therefore,
the likelihood alpha of the same location it is defined as:

α =

{
ed−1
e−1 , d ≥ 0

0, d < 0
(9)

where d represents the difference between diagonal and off-
diagonal values linked to the average value of diagonal simi-
larities Sdia and off-diagonal similarities Soff in the matrix.

d = Sdia − Soff (10)

Sdia =
1

4

3∑
i=0

SMii (11)
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(a1) image captured during day (a2) image captured during night
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(b) Similarity Matrix of (a1) and (a2)

Fig. 3. An example of a location that varies greatly at different times.

Soff =
1

12

∑
i6=j

SMij (12)

In this case, if Sdia � Soff , α approaches to 1, it means
there’s a high probability of having a positive pair, so the
final similarity is the weighted average of diagonal patch
similarities. On the contrary, the closer Sdia is to Soff , the
smaller α is. So, if Sdia < Soff , it is highly possible that the
two images are captured from different places, thus setting α
to 0 directly.

In terms of some places, such as the pavements, the same
location may have relatively large differences at different
times. As shown in Fig.3, the two images captured from the
same location have distinct differences in the lower left part
due to the pedestrians blocking. Hence the diagonal value
(SM22) calculated by these patches is no longer significantly
larger than that of the off-diagonal value associated with it,
which is called the SM22 outlier. By giving it less weight ωi,
we can reduce its influence on the overall similarity. These
weights can be formulated as:

γi =
(
∑

i,j 6=i SMij +
∑

j,i6=j SMij)

6
(13)

ki =

{
SMii − γi,SMii > γi

0,SMii < γi
(14)

ωi =
ki∑
i ki

(15)

where γi is the average value of the off-diagonal values
of the similarity matrix calculated from the image pair’s i-
th patch. ki is the distance of diagonal and off-diagonal
values generated by the i-th patch. ωi denotes the weight of
the diagonal elements. These weights are used to reduce the
influence of outliers and ensure the overall similarity.

TABLE I
DETAILS OF THE TESTING DATASETS

Dataset Environment
Appearance

Variation

Viewpoint

Variation

Gardens Point Campus Day-Night Moderate

Nordland Train journey Winter-Summer Small

Stlucia Suburban Morning-Afternoon Moderate

C. Training
We constituted the training dataset by sampling image pairs

from the SPED 900 dataset [27]. The PyTorch framework
implements the network on an NVIDIA Geforce Titan XP
GPU. To speed up network training, we used the parameters
of AlexNet 5CONVs pre-trained by the ImageNet dataset
[28] as initial parameters in the feature extraction module.
Adam [29] with β1 =0.9, β2 = 0.99 is used as the optimizer
to train the network with batch size of 64 due to the limit
of the memory. The initial learning rate is set to 0.001
and reduced by 0.1 times every 30 epochs. Besides, early
stopping technologies are introduced to prevent the model
from overfitting. In our experiments, the scale of RGB images
is resized to 320×240×3 before fed into the network, and the
ground truth is processed to a binary classification with the
label space 0, 1. We chose binary cross-entropy (BCE) as the
loss to train the model, which can be defined as:

Loss = − 1

n

∑
i

yi ∗ logSi + (1− yi) log(1− Si) (16)

where Si and yi correspond to the similarity score and the label
of the image pair sample, respectively. The label of positive
pairs is 1 and of negative is 0.

IV. EVALUATION AND ANALYSIS
In this section, we first present the details of three publicly

available datasets used in the experiments. Then, comparisons
performed against several state-of-the-art approaches, such as
SAES [24], CALC2.0 [30] and Place-ResNet [31] to verify the
feasibility and effectiveness of the proposed method. Finally,
we evaluate and analyze the proposed framework in terms of
feature extraction and similarity measurement methods.

A. Datasets
To evaluate the robustness of the proposed system in re-

sponse to appearance changing conditions, we choose three
public datasets as the test set (i.e., GardensPoint dataset [32],
Nordland dataset [33], and Stlucia dataset [34]). Details of
these datasets are shown in Table I, and some examples of the
real scene are shown in Fig. 4.

The Gardens Point dataset is collected at Queensland Uni-
versity of Technology campus by traversing the walkways in
the daytime (along both sides) and the night (only along the
right side). The day-right and night-right pairs are adopted as
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(a1) DAY (a2) NIGHT

(b1) SUMMER (b2) WINTER

(c1) SL0845 (c2) SL1545

Fig. 4. Some sample images of the image sequences we use in the
experiments.

DAY-NIGHT to assess the performance tackling the significant
illumination variation. Besides, the method for generating
its ground truth is to select correspondences of the frame
manually.

Nordland dataset is produced from a TV documentary that
records a train journey covering four seasons’ appearance vari-
ations. By arranging images from different seasons following
their positions, the ground truth can be constructed based on
image indexes. Winter-summer images (denoted as WINTER
and SUMMER) with the most significant appearance varia-
tions are selected as part of the test set.

For the Stlucia dataset, the images are captured in the
suburbs at five different times (8:45, 10:00, 12:10, 14:10,
15.45) of the day with significant appearance changes due
to illumination and GPS logs obtain its ground truth. In our
evaluation experiment, the SL0845 and SL1410 collected at
8:45 and 14:10, respectively, are selected to form the test set
because they have the most significant contrasts among all
pairs.

B. Evaluation Methods

Loop closure, essentially, is a binary classification task with
only two outcomes, a loop closure or not a loop closure.
Therefore, we utilize the precision-recall curve (PR-Curve), a
standard method to evaluate binary classification, to quantify
the proposed LCD method’s effectiveness. For this problem,
the correct detections are considered as true positives(TP),
the incorrect detections are known as false positives(FP),
and the ground-truth loops undetected are defined as false
negatives(FN). In the image of PR-Curve, the curve, which

is closer to the upper right corner, has better performance.
To produce the PR-Curve of given datasets, we compute the
similarity for each pair of images. A threshold on the similarity
is then applied to determine if loop closure has occurred, and a
precision and recall pair results after all images in the datasets
are considered and defined as follows:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

Precision denotes the ratio between the number of correct
positive and all positive results. While the recall is the ratio
between correct positive and all the loops in the ground-truth.
We calculate different values of precision and recall by varying
the threshold so that we can plot a PR-curve. There are many
ways to interpret PR-Curve, we mainly use: (1) the average
precision (AP), where a high precision over all recall values
is desirable, and AP is calculated by using (19); and (2) the
maximum recall rate at 100% of precision, denoted by R,
where again a higher value is desired. These two criteria are
also useful when we need scalar values to characterize the
overall performance of loop closure detection.

AP =

∫ 1

0

P (r)dr (19)

where P (r) denotes the PR-curve.

C. Experimental Results

1) Comparison with state-of-the-art: Comparisons are made
on Gardens Point, Nordland, and Stlucia datasets between our
method and SAES, CALC2.0, and Place-ResNet, which are
state-of-the-art loop closure detection approaches.

The PR-Curve graphs are drawn based on the experimental
results, and the curves are shown in Fig. 5. It can be seen from
the figures that with a higher level of similarity threshold,
the precision is more heightened and recall is lower for all
methods. As the decrease of similarity threshold, precision
drops, and recall increases. Therefore, there is a mutual
restriction relationship between precision rate and recall rate.
In practical application, the similarity threshold must be set
according to the actual environment as a balance point to
make the precision and recall rate relatively higher. It is also
obvious from the figures that the PR-curve of the proposed
MetricNet is closer to the upper right corner than other
methods. On the one hand, this means that the proposed
MetricNet can get relatively higher precision and recall at
the same time than other methods. On the other hand, the
improvement in three test datasets captured in environments
different from the training dataset shows that our approach
has better robustness to environmental changes when applied
to loop closure detection. These improvements mainly ben-
efit from the consideration of spatial information and the
contextual information of the images. The precision rate of
MetricNet is lower when the recall rate is high on Gardens
Point and Nordland datasets because these two datasets have
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Fig. 5. The PR-Curves of different networks on (a) Gardens Point dataset, (b) Nordland dataset and (c) Stlucia dataset.
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Fig. 6. The maximum recall rate at 100% of precision of different
networks.

more serious viewpoint changes and more dynamic objects
than the training dataset. Additional training datasets with
viewpoint variations and dynamic objects can easily address
this in real-world applications.

Fig. 6 shows the maximum recall rate at 100% of pre-
cision of our method and the competing approaches. It has
demonstrated that the proposed method can almost achieve
the highest recall rate with 100% of precision. The recall
rate reaches up to 43.97%, 44.49%, and 26.72% on three
datasetsrespectively, which are improved by up to 10% - 30%
compared with other methods. The result means that fewer real
loop closure can be missed leveraging our approach, which is
expected in the practical tasks. This improvement is principal
because we use the feature block to construct the similarity
matrix and assign adaptive weights to each element to enhance
positive pairs’ characteristics, making positive pairs easier to
distinguish. It can also be seen that the proposed MetricNet
performs equally well with different challenging datasets and
can achieve the highest recall rate with 100% precision.

Table II shows the comparison of average precision on
three datasets calculated from the PR-curve of each method.
Machine learning theory points out that the larger the area en-
closed by the PR-curve and the coordinate axis, the higher the
average precision and the better the algorithm’s performance.

TABLE II
AP COMPARISON OF DIFFERENT NETWORKS

Dataset SAES CALC2.0 Place-ResNet MetricNet

GardensPoint 0.6997 0.7284 0.3048 0.7831

Nordland 0.7162 0.6348 0.8209 0.8458

Stlucia 0.7098 0.5869 0.6860 0.7476

It can be observed that the AP of the proposed method is
higher than that of other comparison methods on each dataset,
respectively, which demonstrates the satisfactory performance
of the proposed method.

2) Evaluation of Feature Extraction Methods: To evaluate the
feature extraction module’s performance, we compared our
feature Extraction method with the most common approach
based on image patch matching. In the contrast experiment,
each image is directly divided into four patches and sent to
the FE module. Then the features of every patch are extracted
respectively to construct the similarity matrix.

Row 1 of Fig. 7 shows example images from the Nordland
dataset. And the images in Fig. 7(a1) and Fig. 7(a2) origin
from the same place, and their similarity matrices obtained by
our method and competing method are shown in Fig. 7(b1) and
Fig. 7(c1), respectively. And the images in Fig. 7(a2) and Fig.
7(a3) are captured from different places, and their similarity
matrices obtained by these two methods are shown in Fig.
7(b2) and Fig. 7(c2), respectively. Although the competing
method and our method retain similar matrix characteristics,
compared with the competing method, our method enlarges
the difference between the positive pair and the negative pair.
For positive pairs, the diagonal values are far more than the
off-diagonal values, while the value is even more random
regarding negative pairs. This makes the difference between
the positive and the negative more prominent and thus easier
to distinguish.

To prove this effect more clearly, we calculate the similarity
differentials between the mean of diagonal values and the
mean of off-diagonal values in the similarity matrix of positive
pairs and negative pairs on three datasets obtained by the two
methods and define them as d1 and d2 respectively. Then
we plot the probability density distribution of ∆ = d1-d2 for
positive pairs and negative pairs of each dataset. As shown in

Page 8 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

(a1) winter1 (a2) summer1 (a3) winter2

0 1 2 3

0
1

2
3

0.0

0.2

0.4

0.6

0.8

1.0

(b1) Similarity matrix of winter1
and summer1 obtained by dividing
the images directly

0 1 2 3

0
1

2
3

0.0

0.2

0.4

0.6

0.8

1.0

(b2) Similarity matrix of winter2
and summer1 obtained by dividing
the images directly

0 1 2 3

0
1

2
3

0.0

0.2

0.4

0.6

0.8

1.0

(c1) Similarity matrix of winter1
and summer1 obtained by Metric-
Net

0 1 2 3

0
1

2
3

0.0

0.2

0.4

0.6

0.8

1.0

(c2) Similarity matrix of winter2
and summer1 obtained by Metric-
Net

Fig. 7. The similarity matrixes obtained by dividing the images directly
and obtained by MetricNet.

Fig. 8, the horizontal axis represents the similarity difference
of ∆, and the vertical axis represents the corresponding
probability density. It obeys distributed on all datasets, and the
corresponding probability density function can be expressed
as:

f(∆) =
1√

2πσ2
e−

(∆−µ)2

2σ2 (20)

where µ and σ denote the mean and standard deviation of ∆,
respectively.

And the area under the curve represents the probability of
∆, if ∆>0, we fill the area under the curve with orange,
otherwise fill it with mediumvioletred. As shown in Fig.
8, for the positive pairs of the three datasets, most of the
similarity differences obtained by our method are larger than
those obtained by the comparison method. While, for the
negative pairs, the differences brought by our method are
relatively small. The results show that the extracted features
enhance the difference between the positive pair and the
negative pair of the similarity matrix, making it easier to judge
them, which is what we expect. The results show that using
the convolutional network’s sliding window to consider the
context connection between different feature patches is better
than directly dividing the image. Simultaneously, removing
background information by channel weighting can further
remove the redundancy of features and make the extracted
features more discriminative.

3) Comparison of Similarity Measurement Methods: We also
compare our adaptive weighted similarity matrix with the
other three conventional approaches (e.g., cosine, euclidean,
and average similarity) of similarity measurement on three
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Fig. 8. The probability density distribution of the difference of the similarity between our method and the method of dividing image directly.
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Fig. 9. The PR-Curves of different measurement methods on (a) Gardens Point dataset, (b) Nordland dataset and (c) Stlucia dataset.

TABLE III
AP COMPARISON OF DIFFERENT MEASUREMENT METHODS

Dataset Euclidean Cosine AVE-SIMI MetricNet

GardensPoint 0.4932 0.5663 0.5805 0.7831

Nordland 0.4638 0.4885 0.4736 0.8458

Stlucia 0.3828 0.5205 0.5659 0.7476

datasets. For the methods of cosine and euclidean, the images
are fed into feature extractor to generate features without
being divided into four parts, and similarities are calculated by
features directly. For the average similarity (AVE-SIMI), we
directly use the average value of all elements of the similarity
matrix as the final similarity.

Fig. 9 shows the performance of the proposed MetricNet
and the competing approaches on three datasets. It can be
observed that both competing approaches and MetricNet can
achieve higher precision at a low recall rate, but in a high
recall rate, MetricNet has the best performance. We conclude
that our method can obtain more real loops when the recall
rate is high, which we expect to see in practice. This similarity
between images is reflected in the feature vector’s size and the
direction of the feature vector. We supplement the direction in-
formation by constructing a similarity matrix. For this reason,
the proposed method can get much better performance than
other methods.

Fig. 10 shows the maximum recall rate at 100 % of precision
of each method. Among all of the datasets, compared with
other methods, the recall rate can be increased by 10% - 40%,
especially compared with the euclidean method. The result
means we will miss fewer loop closures, which can bring great
help in practical application.

Table III shows the average precision of the proposed Met-
ricNet and comparison method. As we can see, the proposed
method can get the maximum average precision, which proves
that our method for measuring similarity has relatively high
precision in all recall rates. It has the best performance on
the whole. Similar results also can be seen in Fig. 11. The
good performance on each dataset shows that the proposed
MetricNet has good generalization for different appearance
variations. All of the above improvements are due to the full
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Fig. 10. The maximum recall rate at 100% precision of different
measurement methods.
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Fig. 11. Ap comparison of different measurement methods.

use of image information, considering the similarity between
the appearance features of the image itself and spatial infor-
mation.

4) Computational performance: The average computational
cost required by MetricNet is compared with SAES in terms
of the running time for (1) feature extraction and processing
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TABLE IV
PROCESSING TIME COMPARISON ON THE NORDLAND

DATASET

Algorithm
Processing Time(s)

Feature

Extraction

Similarity Matrix

Construction

Similarity

Calculation

MetricNet 0.0370 0.0055 0.0022

SAES 0.0218 0.0065 0.0025
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Fig. 12. Comparison of time cost of MetricNet and SAES in loop closure
detection.

by the neural networks models, (2) construction of similarity
matrix, (3) similarity calculation between the image pair of
the current and previous image. The Nordland dataset is
used to test the time consumption, as it has the largest
database, as these two networks contain the three modules to
be compared. Table IV shows the average time consumption
of the two tested networks. The algorithms are conducted on
an NVIDIA Geforce Titan XP GPU. As shown in Table IV,
feature extraction takes most of the execution time due to a
large number of computations in the deep networks for these
two algorithms, and our method takes more time because of
the channel weighting, further optimizations can reduce the
execution time. But for the other two modules, our algorithm
takes less time.

In the process of loop closure detection, it is necessary
to extract features of the current image in real time and
construct similarity matrix and calculate the total similarity
between the current image and the previous image. With the
increase of previous images, the loop closure detection time
of each frame will gradually increase. According to Table IV,
the loop closure detection time-consuming models of the two
algorithms can be obtained respectively. As shown in Fig. 12,
with the increase of the previous images, the MetricNet has
higher efficiency and better real-time performance.

V. CONCLUSION

This paper presents a novel framework that solves the de-
tection problem caused by illumination and seasonal variations
in the LCD task. In the framework, the feature extraction and
similarity measurement are trained and deployed in an end-to-
end manner. By introducing channel weighting, the irrelevant
background information is removed. Besides, we utilize the
spatial information of images by constructing a weighted sim-
ilarity matrix to measure the overall similarity adaptively. The

extensive experiments on three different datasets verify that the
MetricNet outperforms many learning-based algorithms and
produces a promising generalization in appearance variations
image pairs.

In the future, we plan take into account further challenges
such as viewpoint changes and apply our algorithm to the real-
world vSLAM system. Besides, since we detect loops based
on similarity scores in this paper, instead of the current fixed
measurement method , we will try to use the learning-based
way to model a measurement function in a data-driven manner
to pursue higher performance.
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